Analytical Chemistry

Associate professor Mohamed Frahat Foda

Email: m.frahat@fagr.bu.edu.eg
Website:
https://www.bu.edu.eg/staff/mfrahat6

Acid-Base Titrations

Titrations

In a titration, a solution of accurately known concentration is gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

Equivalence point - the point at which the reaction is complete Indicator - substance that changes color (this is called the end point). Indicators must be carefully chosen so that the end point occurs at the equivalence point in the titration.

Slowly add base to unknown acid UNTIL
the indicator changes color

- The equivalence point: the point when the reactants are done reacting.
$\boldsymbol{\sim}$ The equivalence point is the ideal point for the completion of titration. At the equivalence point the correct amount of standard solution must be added to fully react with the unknown concentration.
- The end point: it indicates once the equivalence point has been reached. It is indicated by some form of indicator which varies depending on what type of titration being done. For example, if a color indicator is used, the solution will change color when the titration is at its end point.

Equivalence point \& End point ARE NOT necessarily equal.

- An endpoint is indicated by some form of indicator at the end of a titration.
- An equivalence point is when the moles of a standard solution (titrant) equal the moles of a solution of unknown concentration (analyte).

pH

- Acidic solutions have pH values less than 7, and the more acidic the solution is, the lower its pH .
- Basic solutions have pH values greater than 7, and the more basic the solution is, the higher its pH .

pH Range

TYPES Of Titrations . . .

- There are many types of titrations with different procedures and goals.

NAcid-Base titration
N Redox titration

* Gas phase titration

N Complexometric titration
\cdots Back titration
\cdots Karl Fischer titration (Potentiometric)

Acid - Base titration:

Acid-base titrations depend on the neutralization between an acid and a base when mixed in solution.

- In addition to the sample, an appropriate indicator is added to the titration chamber, reflecting the pH range of the equivalence point.
- The acid-base indicator indicates the endpoint of the titration by changing color.

The final solution after titration should be neutralized and contain equal moles of hydroxide and hydrogen ions. So the moles of acid should equal the moles of base:

$$
\text { MOLARITY }=\frac{\text { MOLES }}{\text { LITER }}=\frac{\mathrm{mol}}{\mathrm{~L}}
$$

VOLUME ${ }^{*}=$ MILLILITER $(m L)$ or LITER (L)
** MUSTBE CONSTANT THROUGHOUT EQUATION

Some common Indicators used in acid
 - base titration:

Indicator	Color on acidic side	Range of color change	Color on basic side
Methyl violet	Yellow	$0.0-1.6$	Violet
Bromophenol blue	Yellow	$3.0-4.6$	Blue
Methyl orange	Red	$3.1-4.4$	Yellow
Methyl red	Red	$4.4-6.3$	Yellow
Litmus	Red	$5.0-8.0$	Blue
Bromothymol blue	Yellow	$6.0-7.6$	Blue
Phenolphthalein	Colorless	$8.3-10.0$	Pink
Alizarin yellow	Yellow	$10.1-12.0$	Red

ACID-BASE TITRATION

a Acid + b Base
 Salt \ddagger Water

Titration Formula

$$
M_{A} \times V_{A}=M_{B} \times V_{B}
$$

Molarity Acid x Volume Acid = Molarity Base x Volume Base

Example: A 24.00 ml sample of an unknown acid is titrated to a phenolphthalein end point, which required 31.46 ml of a 0.104 M solution of NaOH . What is the molar concentration of the unknown acid?
i. At the end point (equivalence point) the moles of acid = moles of added base:
ii. $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}=$ moles acid $=$ moles base $=\mathrm{M}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}$
iii. $M_{A}=\frac{M_{B} V_{B}}{V_{A}}=\frac{0.104 \mathrm{M} \times 31.46 \mathrm{ml}}{24.00 \mathrm{ml}}=0.136 \mathrm{M}$

What volume of a 1.420 M NaOH solution is required to titrate 25.00 mL of a $4.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution to the eq. point?

Answer: Write the chemical equation:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

$\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}=$ moles acid* $\left(\mathrm{H}^{+}\right)=$moles base $\left(\mathrm{OH}^{-}\right)=\mathrm{M}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}$
Note that $\mathrm{H}_{2} \mathrm{SO}_{4}$ is diprotic, so moles $\mathrm{H}^{+}=2 \times$ moles $\mathrm{H}_{2} \mathrm{SO}_{4}$
volume acid $\xrightarrow[\text { acid }]{M}$ moles acid $\xrightarrow[\text { ratio }]{\mathrm{mol}}$ moles base $\xrightarrow[\text { base }]{M}$ volume base

Question 1:

$25.0 \mathrm{~cm}^{3}$ of sulphuric acid is neutralised by 34.0 cm^{3} of 0.1 mol of $\mathrm{dm}^{-3} \mathrm{NaOH}$. Calculate the concentration of sulphuric acid in:
(a) $\mathrm{mol} \mathrm{dm}^{-3}$
(b) $\mathrm{g} \mathrm{dm}^{-3}$
[relative atomic mass; $\mathrm{H}: 1, \mathrm{~S}: 32,0: 16]$

Solution:

Method 1

Step 1 : write down chemical equation

$$
\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

Step 2 : find the number of mole NaOH

```
n=MV
```

Moles of NaOH
$=$ molarity X Volume $\left(\mathrm{dm}^{3}\right)$
$=0.1$ X 0.034
$=0.0034 \mathrm{~mol}$

Step 3 : from the chemical reaction, the ratio of

$\frac{\text { number of moles of } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { number of moles of } \mathrm{NaOH}}=\frac{1}{2}$

Step 4 : find the number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacted

Step 5 : find the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $\mathrm{mol} \mathrm{dm}^{-3}$
Concentration $=\mathrm{mol} / \mathrm{volume}$
$=0.0017 / 0.025$
$=0.068 \mathrm{~mol} \mathrm{dm}^{-3}$

Step 6 : find the concentration of $\mathrm{H}_{\mathbf{2}} \mathrm{SO}_{4}$ in $\mathrm{g} \mathrm{dm}^{-3}$
Molar mass $\mathrm{H}_{2} \mathrm{SO}_{4}=1(2)+32+16(4)$
$=98 \mathrm{~g} \mathrm{~mol}^{-}$
Concentration $=$ concentration in mol dm ${ }^{-3} \mathrm{x}$ molar mass $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\begin{aligned}
& =0.068 \times 98 \\
& =6.664 \mathrm{~g} \mathrm{dm}^{-3}
\end{aligned}
$$

Method 2:

Step 1 : write down chemical equation

$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Step 2 : find the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $\mathrm{mol} \mathrm{dm}^{-3}$

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{a}}=? & \mathrm{~V}_{\mathrm{a}}=25 \mathrm{~cm}^{3} \\
\mathrm{M}_{\mathrm{b}}=0.1 \mathrm{~mol} \mathrm{dm}^{-3} & \mathrm{~V}_{\mathrm{b}}=34 \mathrm{~cm}^{3} \\
\frac{M_{a} V_{a}}{M_{b} V_{b}}=\frac{a}{b} &
\end{array}
$$

$$
\begin{aligned}
\frac{M_{a}(0.025)}{(0.1)(0.034)} & =\frac{1}{2} \\
\mathrm{M}_{\mathrm{a}} & =0.068 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

Step 3 : find the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $\mathrm{g} \mathrm{dm}^{-3}$
Molar mass $\mathrm{H}_{2} \mathrm{SO}_{4}=1(2)+32+16(4)$
$=98 \mathrm{~g} \mathrm{~mol}^{-}$
Concentration $=$ concentration in mol dm ${ }^{-3} \times$ molar mass $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\begin{aligned}
& =0.068 \times 98 \\
& =6.664 \mathrm{~g} \mathrm{dm}^{-3}
\end{aligned}
$$

Questions

1. What volume of $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid is required to neutralise 0.14 g of potassium hydroxide? [relative atomic mass: $0: 16, \mathrm{~K}: 39, \mathrm{H}: 1]$
2. A 15 cm 3 of an acid with the formula HaX of 0.1 mol $\mathrm{dm}-3$ required 30 cm 3 of $0.15 \mathrm{~mol} \mathrm{dm}-3$ sodium hydroxide solution to complete neutralisation. Calculate the value of \mathbf{a}.

Ans: $12.5 \mathrm{~cm}^{3} / 0.0125 \mathrm{dm}^{3}$

Example Calculation
A 100 mL portion of wastewater was titrated with the chemical that will be used to neutralize the wastewater. 3.6 mL of the chemical were used. What rate should a chemical feed pump be set at in gallons/minute to neutralize the wastewater at a flow of 45,000 gallons/day?
$\frac{3.6 \mathrm{~mL} \text { chemical }}{100 \mathrm{~mL} \text { wastewater }} \frac{3.6 \text { gallons chemical }}{100 \text { gallons wastewater }}=\frac{0.036 \text { gal chemical }}{1 \text { gallon wastewater }}$
$\frac{45,000 \text { gal wastewater }}{\text { day }} \times \frac{0.036 \text { gal chemical }}{\text { gal wastewater }}=\frac{1620 \text { gal chemical }}{\text { day }}$

$$
\frac{1620 \mathrm{gal}}{\text { day }} \times \frac{1 \text { day }}{1440 \mathrm{~min}}=1.125 \mathrm{gal} / \mathrm{min}
$$

Practice Problem

A 500 mL portion of wastewater was titrated with the chemical that will be used to neutralize the wastewater. 5.8 mL of the chemical were used. What rate should a chemical feed pump be set at in gallons/minute to neutralize the wastewater at a flow of 15,000 gallons/day?
$\frac{5.8 \mathrm{~mL} \text { chemical }}{500 \mathrm{~mL} \text { wastewater }}=\frac{5.8 \text { gallons chemical }}{500 \text { gallons wastewater }}=\frac{0.0116 \text { gal chemical }}{1 \text { gallon wastewater }}$
$\frac{15,000 \text { gal wastewater } X}{\text { day }} \frac{0.0116 \text { gal chemical }}{\text { gal wastewater }}=\frac{174 \text { gal chemical }}{\text { day }}$

$$
\frac{174 \text { gal }}{\text { day }} \times \frac{1 \text { day }}{1440 \mathrm{~min}}=0.12 \mathrm{gal} / \mathrm{min}
$$

You Try It!

A 50 ml sample of 0.2 M HCl is neutralized by 75 ml of NaOH . What is the conc. of the base?

$\underline{\mathrm{HCl}} \mathrm{NaOH}$

$0.2 \mathrm{M} \times 50 \mathrm{ml}=\mathrm{M}_{\mathrm{B}} \times 75 \mathrm{ml}$
$M_{B}=.13 M$

Let's Practice

- Which substance is always a product when an Arrhenius acid in an aqueous solution reacts with an Arrhenius base in an aqueous solution?
(1) HBr
(2) KBr
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) KOH
- Which word equation represents a neutralization reaction?
(1) base + acid \rightarrow salt + water.
(2) base +salt \rightarrow water + acid
(3) salt + acid \rightarrow base + water
(4) salt + water \rightarrow acid + base
- What are the products of a reaction between $\mathrm{KOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$?
(1) H_{2} and KClO
(2) KH and HClO
(3) $\mathrm{H}_{2} \mathrm{O}$ and KCl .
(4) KOH and HCl
- Sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, can be used to neutralize barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$. What is the formula for the salt produced by this neutralization?
(1) BaS
(3) BaSO_{3}
(2) BaSO_{2}
(4) BaSO_{4}
- Which compound could serve as a reactant in a neutralization reaction?
(1) NaCl
(2) $\mathrm{CH}_{3} \mathrm{OH}$
(3) KOH.
(4) $\mathrm{CH}_{3} \mathrm{CHO}$

Which equation represents a neutralization reaction?
(1) $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}$ (g) $\rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
(2) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)$
(3) $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow$

$$
\mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

(4) $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{KCl}(\mathrm{aq}) \rightarrow$
$\mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{s})$

You Try It!

How much of a $0.1 \mathrm{M}_{2} \mathrm{SO}_{4}$ solution is needed to neutralize 50 ml of a 0.05 KOH solution?

$$
\begin{aligned}
& \underline{H}_{2} \underline{S O}_{4} \quad \underline{\mathrm{KOH}} \\
& 2 \times .1 \mathrm{M} \times \mathrm{V}_{\mathrm{A}}=.05 \mathrm{M} \times 50 \mathrm{ml} \\
& \mathrm{~V}_{\mathrm{A}}=12.5 \mathrm{ml}
\end{aligned}
$$

Let's Practice

- During which process can 10.0 milliliters of a $0.05 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ solution be used to determine the unknown concentration of a given volume of $\mathrm{NaOH}(\mathrm{aq})$ solution?
(1) evaporation
(2) filtration
(3) distillation
(4) titration.
- The data collected from a laboratory titration are used to calculate the
(1) rate of a chemical reaction
(2) heat of a chemical reaction
(3) concentration of a solution.
(4) boiling point of a solution

A student completes a titration by adding 12.0 ml of $\mathrm{NaOH}(\mathrm{aq})$ of unknown concentration to 16.0 ml of $0.15 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$.

What is the molar concentration of the $\mathrm{NaOH}(\mathrm{aq})$?
(1) 0.11 M
(2) 1.1 M
(3) 0.20 M
(4) 5.0 M

Neutralization and Titration Problems

-What mass of $\mathrm{NaOH}_{(\mathrm{s})}$ must be added to 300 mL of HCl 0.25 M in order to completely neutralize this acid? (hint...just find number of moles)

$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

$0.25 \mathrm{~mol}=1 \mathrm{~L}$
$\mathrm{X} \mathrm{mol}=0.3 \mathrm{~L}$
$X=0.075 \mathrm{~mol}$ of HCl in $\mathbf{3 0 0} \mathrm{mL}$ of solution
0.075 mol of NaOH will neutralize $\mathbf{0 . 0 7 5} \mathbf{~ m o l ~ o f ~} \mathrm{HCl}$

1 mol of $\mathrm{NaOH}=40 \mathrm{~g}$
0.075 mol of $\mathrm{NaOH}=\mathrm{x}$ g
$\mathrm{x}=3 \mathrm{~g}$
3 g of NaOH are used to neutralize 0.3 L of HCl 0.25 M
-During a lab, you mix 2 solutions: a 100 ml solution containing 0.40 g of NaOH and a 100 mL solution containing 0.73 g of HCl . What is the concentration of H^{+}ions in the new solution?

$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

1 mol of NaOH will neutralize 1 mol of HCl
The total volume of the solution is $=200 \mathrm{~mL}$
There will be an excess of $\mathrm{HCl}(0.40 \mathrm{~g}$ of NaOH to 0.73 g of HCl)
1 mol of $\mathrm{NaOH}=40 \mathrm{~g}$
$\mathrm{x} \mathrm{mol}=0.4 \mathrm{~g}$
$\mathrm{x}=0.01 \mathrm{~mol}$
0.73 g of HCl
$36.5 \mathrm{~g}=1 \mathrm{~mol}$
$0.73 \mathrm{~g}=\mathrm{x}$ mol
$\mathbf{x}=\mathbf{0 . 0 2} \mathbf{~ m o l}$

You will have 0.01 mol of HCl that will not have reacted with the NaOH
$0.01 \mathrm{~mol}=0.2 \mathrm{~L}$
$\mathrm{x} \mathrm{mol}=1 \mathrm{~L}$
$\mathrm{X}=0.05 \mathrm{~mol}$
$\left[\mathrm{H}^{+}\right]=0.05 \mathrm{M}$

Calculate the volume of $\mathrm{Ba}(\mathrm{OH})_{2} \mathbf{0 . 2 0} \mathrm{M}$ necessary to neutralize 300.0 mL of $\mathrm{H}_{3} \mathrm{PO}_{4} \mathbf{0 . 3 0} \mathrm{M}$.
$M_{1} V_{1}=M_{2} V_{2}$
It is $\mathrm{Ba}(\mathrm{OH})_{2}$ So you have the double of OH^{-}ions. It is $\mathrm{H}_{3} \mathrm{PO}_{4}$ so you have three times the amount of H^{+} ions 0.30 M .
$(0.2 \mathrm{Mx} 2) \times \mathrm{V}_{1}=(0.3 \mathrm{Mx} 3) \times 0.3 \mathrm{~L}$ $\mathrm{V}_{1}=0.675 \mathrm{~L}$
The volume is 675 mL .

During an acid-base titration, 23.3 mL of $\mathbf{H C l}$ completely neutralized 19.5 mL of potassium hydroxide 0.315 M. Calculate the concentration of the hydrochloric acid.

$$
\begin{aligned}
& M_{a} V_{a}=M_{b} V_{b} \\
& M_{a}=(0.315 \mathrm{M})(0.0195 \mathrm{~L}) / 0.0233 \mathrm{~L} \\
&=0.264 \mathrm{M}
\end{aligned}
$$

During an acid-base titration, 25 mL of 0.2 M NaOH were required to neutralize 20 mL of HCl . Calculate the concentration

$$
\begin{gathered}
M_{1} V_{1}=M_{2} V_{2} \\
0.02 \mathrm{~L} \times M_{i}=0.2 \mathrm{M} \times 0.025 \mathrm{~L} \\
\mathrm{M}_{\mathrm{i}}=0.25 \mathrm{M}
\end{gathered}
$$

Calculate the volume of 0.5 M NaOH necessary to neutralize 300 mL of 0.2 M HCl .

Answer: V=120 mL
-To standardize a solution of $\mathrm{HCl}, 0.1423 \mathrm{~g}$ of Na 2 CO 3 (eq wt
= 53.00) was dissolved in 50 mL of water and titrated with 27.82 mL of HCl . What is the normality of the $\mathrm{HCl}(a q)$?
$N=e q / L \quad 27.82 \mathrm{~mL} x(1 \mathrm{~L} / 1000 \mathrm{~mL})=0.02782 \mathrm{~L} \mathrm{HCl}$
$0.1423 \mathrm{~g} \mathrm{Na2CO3x}(1 \mathrm{eq} / 53.00 \mathrm{~g}) x(1 \mathrm{eq} \mathrm{acid} / 1 \mathrm{eq}$ base $)=0.002684 \mathrm{eq}$ $[\mathrm{HCl}]=0.002684 \mathrm{eq} / 0.02782 \mathrm{~L}=0.09651 \mathrm{~N}$

- To standardize a solution of $\mathrm{NaOH}, 0.5531 \mathrm{~g}$ of $\mathrm{KHP}(\mathrm{eq} w t=$ 204.23) was dissolved in 50 mL of
water. This solution required 31.11 mL of $\mathrm{NaOH}(a q)$ for neutralization. What is the normality of the $\mathrm{NaOH}(a q)$?
$[\mathrm{NaOH}]=e q / L 31.11 \mathrm{~mL} x(1 \mathrm{~L} / 1000 \mathrm{~mL})=0.03111 \mathrm{~L}$ NaOH 0.5531 g KHP $\boldsymbol{x}(1 \mathrm{eq} / 204.23 \mathrm{~g}) \times(1 \mathrm{eq}$ base/1 $e q$ acid $)=0.002708 \mathrm{eq}[\mathrm{NaOH}]=0.002708 \mathrm{eq} / 0.03111$ $L=0.08705 \mathrm{~N} \mathrm{NaOH}$

A 0.9932 g sample of limestone was titrated with 15.67 mL of 0.113 N HCl , what is the percent of calcium carbonate in the sample?

```
%CaCO3 = (g CaCO3/g limestone) }x\mathrm{ 100 g limestone =0.9932g Eq wt CaCO3
= 100.09 g/mol x (1 mol/2 eq) = 50.04 g/eq
15.67 mL HCl x (1 L/1000 mL) x (0.113 eq/1 L) x (1 eq CaCO3/1 eq HCl) x (2
mol/1 eq) x (100.09 g/1 mol)=0.0886 g
Or
```

$15.67 \mathrm{~mL} \mathrm{HCl} x(1 \mathrm{~L} / 1000 \mathrm{~mL}) x(0.113 \mathrm{eq} / 1 \mathrm{~L}) x(1 \mathrm{eq} \mathrm{CaCO3/1} \mathrm{eq} \mathrm{HCl}) x$
$(50.04 \mathrm{~g} / 1 \mathrm{eq})=0.0886 \mathrm{~g}$
$\% \mathrm{CaCO3}=0.0886 \mathrm{~g} / 0.9932 \mathrm{~g} x 100=8.92 \%$

A 27.44 mL of $0.222 \mathrm{~N} \mathrm{Ba}(\mathrm{OH})_{2}$ was required to neutralize all the benzoic acid $(\mathbf{C} 6 \mathrm{H} 5 \mathrm{COOH})$ in a 1.224 g sample of organic material. What was the percent benzoic acid in the sample?
$B A=$ benzoic acid
$\% B A=(g B A / g$ sample $) x 100 \quad g$ sample $=1.224 g$
$E q$ wt $B A=122.13 \mathrm{~g} / \mathrm{mol} x(1 \mathrm{~mol} / 1 \mathrm{eq})=122.13 \mathrm{~g} / \mathrm{eq}$ $27.44 \mathrm{~mL} \mathrm{Ba}(\mathrm{OH})_{2} x(1 \mathrm{~L} / 1000 \mathrm{~mL}) \times(0.222 \mathrm{eq} / 1 \mathrm{~L}) x(1 \mathrm{eq} \mathrm{BA} / 1 \mathrm{eq}$ $\left.\mathrm{Ba}(\mathrm{OH})_{2}\right) x(122.13 \mathrm{~g} / 1 \mathrm{eq})=0.744 \mathrm{~g} \mathrm{BA}$ $\% B A=(0.744 \mathrm{~g} / 1.224 \mathrm{~g}) x 100=60.8 \%$

The citric acid in a 0.541 g vitamin tablet was dissolved in 20 mL of 1.021 N NaOH . The excess base was titrated with 9.21 mL of 0.223 N HCl. How many mg of citric acid ($\mathrm{eq} \mathrm{wt}=64.0$) was in the vitamin tablet?

$C A=$ citric acid

Original amount of base $=(0.02 \mathrm{~L})(1.021 \mathrm{eq} / \mathrm{L})=0.02042$ eq base Excess base $=9.21 \mathrm{~mL} \mathrm{HCl} x(1 \mathrm{~L} / 1000 \mathrm{~mL}) x(0.223 \mathrm{eq} / 1 \mathrm{~L}) x(1 \mathrm{eq} \mathrm{base} / 1 \mathrm{eq}$ acid $)=0.00205$ eq Base that reacted with $C A=0.02042-0.00205=0.01837$ $0.01837 \mathrm{eq} x(64.0 \mathrm{~g} / \mathrm{eq}) \times(1000 \mathrm{mg} / 1 \mathrm{~g})=1175 \mathrm{mg}=1.18 \times 10^{3} \mathrm{mg}$

A 0.1298 g sample of pure acid was titrated with 42.11 mL of 0.1234 N NaOH . What is the equivalent weight of the acid? grams acid $=0.1298$
Equivalent weight = grams per equivalent
$42.11 \mathrm{~mL} \mathrm{NaOH} x$ (1 L/1000 mL) x ($0.1234 \mathrm{eq} / \mathrm{L}) x$ (1 eq acid/1 eq base $)=0.005196 \mathrm{eq}$
$E q w t=0.1298 \mathrm{~g} / 0.005196 \mathrm{eq}=24.98 \mathrm{~g} / e q$
A 0.3349 g sample of pure base was titrated with 33.33 mL of $0.1673 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. What is the equivalent weight of the base? grams base $=0.3349$
Equivalent weight $=$ grams per equivalent $33.33 \mathrm{~mL} x(1 \mathrm{~L} / 1000 \mathrm{~mL}) x(0.1673 \mathrm{eq} / \mathrm{L}) x$ (1 eq base/l eq acid) $=0.005576 \mathrm{eq}$
$E q w t=0.3349 \mathrm{~g} / 0.005576 \mathrm{eq}=60.06 \mathrm{~g} / \mathrm{eq}$
-How many milliliters of $0.341 \mathrm{~N} \mathrm{H}_{\mathbf{2}} \mathrm{SO}_{4}$ are required to react with 30 mL of $0.333 \mathrm{~N} \mathrm{Cr}(\mathrm{OH}) 3$?

$$
\begin{gathered}
N_{a} V_{a}=N_{b} V_{b} \\
(0.341 N) V=(0.333 N)(30 \mathrm{~mL})
\end{gathered}
$$

$V=29.3 \mathrm{~mL}$
-What is the normality of a solution of unknown base if 23.45 mL of 0.1236 N HCl are required to neutralize 33.5 mL of it?

$$
\begin{gathered}
N_{a} V_{a}=N_{b} V_{b} \\
(0.1236 \mathrm{~N})(23.45 \mathrm{~mL})=N(33.50 \mathrm{~mL})
\end{gathered}
$$

$[$ base $]=0.08652 \mathrm{~N}$

Convert the following to Normality:

a) $0.54 \mathrm{M} \mathrm{NH}_{3}$
$1 \mathrm{~mol}=1 \mathrm{eq}$
$0.54 \mathrm{~mol} / \mathrm{L} x(1 \mathrm{eq} / 1 \mathrm{~mol})=0.54 \mathrm{eq} / \mathrm{L}$
$0.54 \mathrm{M}=0.54 \mathrm{~N}$
b) $0.43 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
$1 \mathrm{~mol}=2 \mathrm{eq}$
$0.43 \mathrm{M}=0.86 \mathrm{~N}$
c) $0.32 \mathrm{M} \mathrm{H}_{3} \mathrm{AsO}_{4}$
$1 \mathrm{~mol}=3 \mathrm{eq}$
$0.32 M=0.96 \mathrm{~N}$

- Convert the following to Equivalents

a) $0.12 \mathrm{~mol} \mathrm{H}_{2} \underline{S O}_{4}$
for $\mathrm{H}_{2} \mathrm{SO}_{4}$ with 2 acidic protons $\left(\mathrm{H}^{+}\right), 1 \mathrm{~mol}=2 \mathrm{eq}$
$0.12 \mathrm{~mol} x(2 \mathrm{eq} / 1 \mathrm{~mol})=0.12 \mathrm{eq}$
$0.12 \mathrm{~mol}=0.24 \mathrm{eq}$
b) 0.34 mol NaHCO 3
for NaHCO 3 which can accept one proton, $1 \mathrm{~mol}=1 \mathrm{eq}$ $0.34 \mathrm{~mol}=0.34 \mathrm{eq}$

c) $0.56 \mathrm{~mol} \mathrm{Cr}(\mathrm{OH})_{3}$

for $\mathrm{Cr}(\mathrm{OH})_{3}$ which can react with 3 protons, $1 \mathrm{~mol}=3 \mathrm{eq}$ $0.56 \mathrm{~mol}=1.7 \mathrm{eq}$
-Convert the following to Moles.
a) $0.98 \mathrm{eq} \mathrm{H} \mathrm{H}_{2} \underline{\mathrm{~S}}$
for $H_{2} \mathrm{~S}$ which has 2 acidic $\mathrm{H}^{+}, 1 \mathrm{~mol}=2 \mathrm{eq}$
0.98 eq $x(1 \mathrm{~mol} / 2 \mathrm{eq})=0.48 \mathrm{eq}$
$0.98 \mathrm{eq}=0.48 \mathrm{~mol}$

b) $0.763 \mathrm{eq} \mathrm{CH} 33-\mathrm{COOH}$

acetic acid has one acidic proton (on the end) so
$1 \mathrm{~mol}=1 \mathrm{eq}$
$0.763 \mathrm{eq}=0.763 \mathrm{~mol}$
c) $0.5647 \mathrm{eq} \mathrm{Ba}(\mathrm{OH})_{2}$
barium hydroxide reacts with 2 protons, $1 \mathrm{~mol}=2$ eq
$0.5647 e q=0.2824$

- Convert the following to Molarity.

a) $0.211 \mathrm{~N} \mathrm{CH}_{3} \underline{N H}_{2}$
$1 \mathrm{~mol}=1 \mathrm{eq}$
$0.211 \mathrm{eq} / \mathrm{L} x(1 \mathrm{~mol} / 1 \mathrm{eq})=0.211 \mathrm{~mol} / \mathrm{L}$
$0.211 \mathrm{~N}=0.211 \mathrm{M}$
b. $0.1951 \mathrm{~N} \mathrm{Ca}(\mathrm{OH})_{2}$
$1 \mathrm{~mol}=2 \mathrm{eq}$
$0.1951 \mathrm{~N}=0.09755 \mathrm{M}$

c) 0.334 N C 6 H 5 COOH

$1 \mathrm{~mol}=1 \mathrm{eq}$
$0.344 \mathrm{~N}=0.344 \mathrm{M}$
-What is the equivalent weight of each of the following substances?
a) NH_{3}

Molar mass $^{2}=14.01+3(1.01)=17.04 \mathrm{~g} / \mathrm{mol}$
For ammonia, $1 \mathrm{~mol}=1 \mathrm{eq}$
$17.04 \mathrm{~g} / \mathrm{mol} x(1 \mathrm{~mol} / 1 \mathrm{eq})=17.04 \mathrm{~g} / \mathrm{eq}$
b. $\mathrm{Ca}(\mathrm{OH})_{2}$
molar mass $=40.08+2(16.00+1.01)=74.10 \mathrm{~g} / \mathrm{mol}$
for calcium hydroxide, $1 \mathrm{~mol}=2 \mathrm{eq}$
$74.10 \mathrm{~g} / \mathrm{mol} x(1 \mathrm{~mol} / 2 \mathrm{eq})=37.05 \mathrm{~g} / \mathrm{eq}$
c. $\mathrm{H}_{3} \mathrm{AsO}_{4}$
molar mass $=3(1.01)+74.92+4(16.00)=141.95 \mathrm{~g} / \mathrm{mol}$ for arsenic acid,
$1 \mathrm{~mol}=3 \mathrm{eq}$
$141.95 \mathrm{~g} / \mathrm{mol} x(1 \mathrm{~mol} / 3 \mathrm{eq})=47.32 \mathrm{~g} / \mathrm{eq}$
d. $\mathrm{H}_{2} \underline{\mathrm{~S}}$
molar mass $=2(1.01)+32.07=34.09 \mathrm{~g} / \mathrm{mol}$
for hydro sulfuric acid, $1 \mathrm{~mol}=2 \mathrm{eq}$
$34.09 \mathrm{~g} / \mathrm{mol} x(1 \mathrm{~mol} / 2 \mathrm{eq})=17.04 \mathrm{~g} / \mathrm{eq}$

What is the normality of a solution of unknown base if $\mathbf{2 3 . 4 5} \mathbf{~ m L}$ of $\mathbf{0 . 1 2 3 6} \mathbf{N ~ H C l}$ are required to neutralize 33.5 mL of it?
$N a V a=N b V b$
$(0.1236 N)(23.45 m L)=N(33.50 m L) V b$ [base] $=0.08652 \mathrm{~N}$

Equation for the titration

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \Rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Answer

- Volume of the acid $=19.2 \mathrm{ml}$
\cdot Factor for the acid $=2$ (the number in front of $\mathbf{H C l}$
in the balanced equation)
-Molarity of the acid ="?
-Volume of the base $=20 \mathrm{ml}$
-Factor for the base $=1$ (the number in front of sodium carbonate in the balanced equation)
- Molarity of the base $=0.048 \mathrm{M}$

To make up an approximate solution of sodium hydroxide and standardize it (find its exact concentration) by titration with the standard hydrochloric acid solution above

Equation for the titration

$\mathrm{NaOH}+\mathrm{HCl} \Rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Answer

- Volume of base $=20 \mathrm{ml}$
- Factor for the base $=1$
- Molarity of the base $=$?
- Volume of the acid $=19.8 \mathrm{ml}$
-Factor for the acid = 1
- Molarity of the acid $=0.1 \mathrm{M}$

$M_{a}=0.1$ moles per litre
 $=0.1$ Molar $=0.1 \mathrm{M}$

Calculation

$\mathrm{Va} \mathrm{Ma}=\mathrm{Vb} \mathrm{Mb}$

$$
\begin{gathered}
19.8 * 0.1=20 * M_{b} \\
M_{b}=\frac{19.8}{20}-\underline{0.1}
\end{gathered}
$$

$$
\cdot \mathrm{M}_{\mathrm{b}}=0.099 \mathrm{moles} / \mathrm{L}=0.099 \mathrm{M}
$$

To determine the percentage of ethanoic acid in vinegar.

Equation for titration
 $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$

Results

-Volume of acid used $=13 \mathrm{ml}$
-Factor for the acid = 1

- Molarity of the acid = ?
-Volume of base used $=20 \mathrm{ml}$
-Factor for the base = 1
- Molarity $=0.1 \mathrm{M}$

Titration readings

Titration number	1	2	3	4
Final burette reading $/ \mathrm{cm}^{3}$	25.2	24.8	33.3	24.9
Initial burette reading $/ \mathrm{cm}^{3}$	0.0	0.0	7.4	0.1
Volume of NaOH used $/ \mathrm{cm}^{3}$	25.2	24.8	25.9	24.8
Best titration results $(\sqrt{ })$		$\sqrt{ }$		

Titration of a known acid with an alkali

Suppose that in an experiment, you are asked to find the concentration of a solution of sulphuric acid by titrating $\mathbf{2 5 . 0}$ cm^{3} of the acid against a standard solution of sodium hydroxide of concentration $\mathbf{0 . 1 0 0}$ $\mathrm{mol} / \mathrm{dm}^{3}$, using phenolphthalein as an indicator

First set up the apparatus as shown in the diagram and then carry out the titration, repeating it as many times as necessary to obtain a set of consistent results

Results

Suppose the following readings are obtained:

Titration number	1	2	3	4
Final burette reading $/ \mathrm{cm}^{3}$	25.2	24.8	33.3	24.9
Initial burette reading $/ \mathrm{cm}^{3}$	0.0	0.0	7.4	0.1
Volume of NaOH used $/ \mathrm{cm}^{3}$	25.2	24.8	25.9	24.8
Best titration results (\downarrow)	$\sqrt{ })$		$\sqrt{ }$	

Mean volume of sodium hydroxide used $=\underline{\mathbf{2 4 . 8} \mathrm{cm}^{3}}$

Titration of a known acid with an alkali

- You are then asked to calculate the concentration of the sulphuric acid from your results.
- The equation for the reaction is: $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
- From the equation,
$\frac{\text { No. of moles of } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { No. of moles of }}=\frac{1}{2}$
Vol. of $\mathrm{H}_{2} \mathrm{SO}_{4} \times$ Conc. of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{1}{2}$

$$
\frac{25.0 \times \text { Conc. of } \mathrm{H}_{2} \mathrm{SO}_{4}}{24.8 \times 0.100 \mathrm{~mol}_{3} \mathrm{~m}^{3}}=\frac{1}{2}
$$

Therefore,

Conc. of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{1 \times 24.8 \times 0.100 \mathrm{~mol} / \mathrm{dm}^{3}}{2 \times 25.0}$

$=0.0496 \mathrm{~mol} / \mathrm{dm}^{3}$

Titration of an unknown acid with an alkali

Aim:
You are provided with a solution containing $5.00 \mathrm{~g} / \mathrm{dm}^{3}$ of the acid $\mathrm{H}_{3} \mathrm{XO}_{4}$. You are to find the relative molecular mass of the acid by titrating $25.0 \mathrm{~cm}^{3}$ portions of the acid with the standard $\left(0.100 \mathrm{~mol} / \mathrm{dm}^{3}\right)$ sodium hydroxide solution, and hence find the relative atomic mass of element X.
The equation for the reaction is:
$\mathrm{H}_{3} \mathrm{XO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{HXO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Results:

Titration No.	1	2	3	4
Final reading/ cm				
Initial reading/ cm^{3}	25.4	25.5	25.6	35.8
Volume of $\mathrm{NaOH} / \mathrm{cm}^{3}$	0.0	0.0	0.0	10.0
25.4	25.5	25.6	25.8	

$■$ Average volume of $\mathrm{NaOH}=\underline{25.5 \mathrm{~cm}^{3}}$

From the equation,

$\frac{\text { No. of moles of } \mathrm{H}_{3} \mathrm{XO}_{4}}{\text { No. of moles of } \mathrm{NaOH}}=\frac{1}{2}$
$\frac{\text { Vol. of } \mathrm{H}_{3} \mathrm{XO}_{4} \times \text { Conc. of } \mathrm{H}_{3} \mathrm{XO}_{4}=}{\frac{1}{2}}$
$\frac{25.0 \times \text { Conc. of } \mathrm{H}_{3} \mathrm{XO}_{4}}{25.5 \times 0.100 \mathrm{~mol}_{4} / \mathrm{dm}^{3}}=\frac{1}{2}$
Therefore, conc. of $\mathrm{H}_{3} \mathrm{XO}_{4}=\frac{1 \times 25.5 \times 0.100}{2 \times 25.0}$
$=0.0510 \mathrm{~mol} / \mathrm{dm}^{3}$

Since $1 \mathrm{dm}^{3}$ of the acid contains 5.00 g of the acid, therefore

$$
\begin{aligned}
0.0510 \times \mathrm{M}_{\mathrm{r}} \text { of } \mathrm{H}_{3} \mathrm{XO}_{4} & =5.00 \mathrm{~g} \\
\mathrm{M}_{\mathrm{r}} \text { of } \mathrm{H}_{3} \mathrm{XO}_{4} & =\frac{5.00}{0.0510}=\underline{98.0}
\end{aligned}
$$

Calculate the relative atomic mass of X :

$$
\begin{aligned}
1 \times 3+X+16 \times 4 & =98 \\
X & =98-67 \\
& =\underline{31}
\end{aligned}
$$

Quick Check

$25.0 \mathrm{~cm}^{3}$ samples of sodium hydroxide solution are titrated against hydrochloric acid which has a concentration of $0.225 \mathrm{~mol} / \mathrm{dm}^{3}$.
The results obtained are shown in the table below

Titration No.	1	2	3	4
Final burette reading/ cm^{3}	24.4	48.9	23.6	48.0
Initial burette reading/ cm^{3}	0.0	24.4	0.0	23.6
Volume of $\mathrm{HCl} / \mathrm{cm}^{3}$				
Best titration result $(\sqrt{ })$				

(a) Complete the table above.
(b) Calculate the concentration of the sodium hydroxide solution

1. A titration flask contains $\mathbf{2 5 . 0} \mathbf{~ c m}^{\mathbf{3}}$ of sodium hydroxide and a few drops of phenolphthalein as indicator. It is titrated against hydrochloric acid contained in a burette. What colour change would you observe when the end point is reached?
(A) colorless to light pink (B) light pink to colorless
(C) red to colorless

Solution to Quick check

Titration No.	1	2	3	4
Final burette reading/ cm^{3}	24.4	48.9	23.6	48.0
Initial burette reading/ cm^{3}	0.0	24.4	0.0	23.6
Volume of $\mathrm{HCl} / \mathrm{cm}^{3}$				
Best titration result $(\sqrt{ })$				

Average volume of HCl used $=24.4 \mathrm{~cm}^{3}$
Equation: $\quad \mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$25.0 \times$ Conc. of $\mathrm{NaOH}=\underline{1}$
$24.4 \times 0.225 \mathrm{~mol} / \mathrm{dm}^{3} \quad 1$
Conc. of $\mathrm{NaOH}=24.4 \times 0.225 \mathrm{~mol} / \mathrm{dm}^{3}$ 25.0
$=\underline{0.220 \mathrm{~mol} / \mathrm{dm}^{3}}$

Prepare 100 mL of 1.0 M hydrochloric acid, $\mathbf{H C l}$ from concentrated (1.21M) hydrochloric acid, HCl.

Solution:

$$
\begin{gathered}
\mathbf{M}_{1} \mathbf{V}_{1}=\mathbf{M}_{2} \mathbf{V}_{2} \\
(12.1 \mathrm{M})\left(\mathbf{V}_{1}\right)=(1.0 \mathrm{M})(100 \mathrm{~mL}) \\
\mathbf{V}_{1}=8.26 \mathrm{~mL} \text { conc. } \mathrm{HCl}
\end{gathered}
$$

Thus, we need 8.26 mL from stock of 1.21 M HCl to prepared 100 mL of a 1.0 M of HCl

- Q: A solution is labelled 0.15 M HCl . How many grams of HCl are present in 1 litre?
A: M_{r} of $\mathrm{HCl}=36.5 \mathrm{~g}$
1 M solution contains $36.5 \mathrm{~g} / \mathrm{I}$
0.15 M solution $=36.5 \times 0.15=5.475 \mathrm{~g}$
- Q : A solution contains $4.9 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ in $100 \mathrm{~cm}^{3}$.

Calculate the concentration in mol/l.
A: M_{r} of $\mathrm{H}_{2} \mathrm{SO}_{4}=98 \mathrm{~g}$

$$
4.9 \div 98=0.05 \mathrm{~mol} \text { in } 100 \mathrm{~cm}^{3}
$$

$0.05 \times 10=0.5 \mathrm{~mol} / \mathrm{l}$

- Q: What volume of 18 M HCl would be required to prepare $250 \mathrm{~cm}^{3}$ of 0.5 M HCl ?

A: $\underline{V}_{\text {dil }} \frac{x}{1000} M_{\text {dil }}=\underline{V}_{\text {conc }} \frac{x M_{\text {conc }}}{1000}$

$\frac{250 \times 0.5}{1000}$
$=\frac{V_{\text {conc }} \times 18}{1000}$
$\frac{250 \times 0}{18}$
$6.94 \mathrm{~cm}^{3}$
$=\quad \mathbf{V}_{\text {conc }}$
$=\quad V_{\text {conc }}$

